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EFFECTS OF ANCIENT STREAM CHAN NEL DEPOSITS 
ON MIN E ROOF STABILITY: A CASE STUDY 

By David K. Ingram 1 and Frank E. Chase1 

ABSTRACT 

The Bureau of Mines conducted underground mapping and rock strength 
tests to describe and analyze mine roof conditions surrounding ancient 
stream channel deposits (paleochannels) in the Pittsburgh Coalbed in 
southwestern Pennsylvania. Paleochannels in the study mine consist of 
sandstone and/or siltstone and affect the Pittsburgh Coalbed through 
erosion and/or differential compaction. Differentially compacted sedi­
ments within and adjacent to channel deposits caused slip planes, 
faults, clay-dike faults, clastic dikes (clay veins), coalbed rolls, and 
slumped structures. Paleochannels can be predicted by recognizing these 
features and associated sediments, which allows for modification of 
long- and short-term mine planning and development. 

Mine entries located beneath the paleochannel deposits exhibit less 
stable roof conditions than entries with normal (nonchannel) roof. Pa­
leochannel deposits comprise only one-fourth of the mapped study area; 
however, they contain one-half of the hazardous roof. This study deter­
mined that rock strength evaluations, including rock quality designation 
(RQD), unconfined uniaxial compressive strength testing, and point-load 
testing, must be accompanied by underground observations. Suggested 
remedial support techniques include angled and/or longer tensioned 
bolts, steel mats or crossbars, steel sets or cribbing, and roof 
trusses. 

'Ge o logis t , Pitts burgh Res earch Center, Bureau o f Mines , Pittsburgh, PA. 
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INTRODUCTION 

Ancient stream channel deposits (paleo­
channels) are commonly preserved in and 
above coalbeds. Paleochannels often 
cause an absence or thinning of the coal­
bed; therefore, mine personnel sometimes 
refer to them as faults, rolls, wants, 
washouts, or stone dikes. Paleochannels 
reduce recoverable reserve estimates, 
complicate long-term mine projections, 
and disrupt the routine mlnlng cycle. 
Differential compaction of sediments in 
proximity to paleochannels may cause 
slip planes, faults, clastic dikes, and 
coalbed and roof rolls. Roof spalling 
adjacent to paleochannels is sometimes 
severe during and after mining. For 

these reasons, paleochannels are consid­
ered roof control safety hazards (l).2 

The primary objectives of this study 
were (1) to identify the geologic charac­
teristics of paleochannels and how they 
influence roof stability, (2) to deter­
mine if these characteristics can be used 
to predict paleochannel trends in advance 
of mining, and (3) to suggest remedial 
roof support and mining methods to mini­
mize roof control problems. This in­
formation is beneficial to operators in 
developing and modifying long- and short­
term mine plans. Some characteristics 
discussed here may be applied to other 
coalbeds and other localities. 

ACKNOWLEDGMENTS 

The authors would like to acknowledge 
the Gateway Coal Co. in Prosperity, PA, 
for allowing the Bureau to have access to 

their mine, mine facilities, and engi­
neering data during the course of this 
research endeavor. 

GEOLOGIC SETTING 

Gateway Mine is located in Greene 
County, PA, approximately 35 miles south, 
west of Pittsburgh (fig. 1). The mine 
operates in the Pittsburgh Coalbed. The 
property is situated in the Dunkard Ba­
sin, which contains gently folded strata 
(dips generally less than 1°) and lies 
within the Appalachian physiographic 
province. Gateway Mine is situated along 
the flanks of the Belle Vernon and Amity 
anticlines and Waynesburg syncline (fig. 
2) (l). Average overburden thickness is 
approximately 800 ft (243 m) throughout 
the study area. 

Stratigraphically, the Pittsburgh Coal­
bed is at the base of the Pittsburgh 
Formation in the Monongahela Group (fig. 

3). The Pittsburgh Formation has five 
members (2). This study is primarily 
concerned with the lowest member, called 
the Lower Member. This member is identi­
fied by its basal bed, the Pittsburgh 
Coalbed, which was deposited in a swamp 
environment. The Pittsburgh Coalbed is 
overlain by either shales and rider coals 
or the Pittsburgh Sandstone, the thickest 
and most extensive sandstone in the Mo­
nongahela Group. This investigation fo­
cuses on the Pittsburgh Sandstone because 
it is the lithified remnant of the an­
cient channel system responsible for the 
discontinuities encountered at the Gate­
way Mine. 

PALEOCHANNEL FORMATION 

Detailed underground mapping revealed 
that the Pittsburgh Coalbed in the study 
area is overlain by either the Pittsburgh 
Sandstone (paleochannel deposits) or the 
rider coal interval (fig. 4). Paleochan­
nel deposits are composed of sandstone, 
siltstone, and/or interbedded sandstones 
and siltstones. Sandstone deposits range 

from relatively clean to highly carbona­
ceous and, in some cases, may be poorly 
cemented and friable. Siltstone depos­
its are dark gray and high in organic 

2Underlined nwnbers i_n parentheses re­
fer to items in the list of references 
preceding the appendix. 
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material, and may contain light-gray 
sandstone streaks. As figure 4 indi­
cates, paleochannels vary in size and 
geometry. Their linear extent ranges 
from 25 to 1,200 ft (7.6 to 366 m), while 
cross-sectional widths range from 2 to 
175 ft (0.6 to 52.9 m). Paleochannel de­
posits range from 2 to 15 ft (0.6 to 3.6 
m) in viewable thickness. 

The distribution and geometry of the 
Pittsburgh Sandstone in southwestern 
Pennsylvania is illustrated in figure 5 
(~-2)' Previous work shows that these 
sediments were transported in a north-to­
northwest direction (5). A roof rock 
facies map of the study area (fig. 6), 

based on drill-log data and underground 
measurements, implies the same north-to-' 
northwest depositional trend. A cross­
sectional drawing constructed from drill­
log data displays the complex lateral 
transitions of lithologies in the immedi­
ate mine roof (fig. 7). 

The rider coal interval ranges in 
thickness from 0 to 11 ft and consists 
of interbedded shales and coals of vari­
able thickness. A shale unit normally 
occurs at the base of the rider coal in­
terval and is commonly called a b1nder 
or draw slate. During development, this 
shale unit is usually mined with the 
Pittsburgh Coalbed, leaving a rider 
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coalbed as the immediate roof. The rider 
coal bed prevents moisture from entering 
into and deteriorating the overlying 
shale units. Occasionally, there is no 
draw slate in proximity to larger paleo­
channels. In some of these cases, the 
rider coalbed is directly above the main 
bench, producing abnormally thick coal 
(fig. 8). When the rider coal interval 
occurs without anomalies, good mining 
conditions and stable roof are usually 
present. 

Underground observations also indicate 
that the paleochannel deposits and the 
rider coal interval were deposited during 
the same time period (contemporaneously). 
Figures 9 through 11 display the mUltiple 
lateral and vertical stratigraphic combi­
nations between the rider coal interval 
and the paleochannel deposits. These 
figures illustrate a lens-shaped deposit, 
horizontal bedding within the individual 
units, and a lack of soft sediments or 
flow structures. 

PALEOCHANNEL CHARACTERISTICS AND THEIR EFFECTS ON THE PITTSBURGH COALBED 

Paleochannels at the Gateway Mine have 
eroded and/or displaced as much as 100 
pct of the Pittsburgh Coalbed in many 
places. Erosion occurred when the an­
cient streams cut into the already depos­
ited peat (Pittsburgh Coalbed), carrying 
it away and then redepositing stream 
channel sediments. An example of this is 
shown in figure 12, where bedding planes 
in the coalbed are truncated by the chan­
nel deposit. Generally, channel deposit 
troughs are either U- or V-shaped in 
cross section. Other evidence of stream 
erosion is the presence of channel lag 
deposits (fig. 13). 

Coalbed displacements associated with 
paleochannels are the direct result of 
differential compaction. Peats, muds, 
silty muds, and sands are reduced from 

their original bulk volume during compac­
tion by the weight of overlying sedi­
ments. The percent volume reduction de­
pends on the depth of burial and the type 
of sediments being compacted. For exam­
ple, it is estimated that at a burial 
depth of 2,000 ft, peat is reduced by 95 
pct during transformation into coal, mud 
by 35 pct into shale, and sand by 11 pct 
into sandstone (i). Differential volume 
reduction around relatively unyielding 
paleochannel deposits caused the sur­
rounding sediments to be deformed. Dif­
ferential compaction between the rider 
coal interval, paleochannel deposits, and 
the Pittsburgh Coalbed formed slip 
planes, faults, clay-dike faults, clastic 
dikes, rolls, and slump structures. 
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FIGURE 8.-Unusually thick deposit of coal, due to the absence of shale binder (part of rider coal interval). 

FIGURE g.-Lens·shaped sandstone deposit (paleochannel) situated in shale binder (part of rider coal 
interval). 
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FIGURE 10.-Nonerosional sandstone deposit uniformly pinching out between coal and shale binder. 

FIGURE 11.-Trough·shaped siltstone deposit underlying a nondisturbed rider coalbed. 
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FIGURE 12.-Truncated coalbed bedding planes caused by erosional siltstone deposit. 

FIGURE 13.-Erosional channel lag deposit at the base of a sandstone deposit. (Pebbles and cobbles consist 
of shale.) 



Two-thirds of the slip planes and 
faults mapped occur within paleochannel 
deposits (fig. 14). These planes display 
a preferred orientation parallel to pa­
leochannel trends. Slip and fault planes 
observed in the mine roof usually extend 
into the coalbed, and less frequently 
into the floor strata. These planes also 
occur along the rider coal interval and 
paleochannel contact as well as the 
sandstone-siltstone contact within the 
paleochannel deposit. Physically, these 
planes are curved and highly slickensided 
(fig. 15). Normal faults associated with 
paleochannels displace the coalbed as 
much as 5 ft (1. 5 m) (fig. 16). Clay 
dike faults (faults with clay filling) 
also parallel paleochannels (fig. 17). 
These structures resulted when the peat 
was displaced (faulted), pulled apart 
(lateral tensional separation), and then 
infilled by overlying sediments. 

Clastic dikes occur both parallel and 
perpindicular to paleochannel deposits 
(fig. 18). All clastic dikes mappable 
over 50 ft (15.2 m) in length occur with­
in 50 ft of a paleochannel. Thirteen of 
the sixteen clastic dikes occur along the 
margins of the two largest paleochannels. 
Clastic dikes vary in composition and 
geometry. Most of them are composed of 
altered, dark-gray clay-size sediments 
that originated from the mine roof. How­
ever, a few are infilled with sediments 
similar to those in the floor (fig. 19). 
As figure 18 indicates, most of the dikes 
are linear to curvilinear in trend. They 
range in width from a few inches to sev­
eral feet. The more continuous clastic 
dikes penetrate through the coalbed and 
into the floor. 

A convex upward coal bed roll occurs 
along one or both flanks of paleochannel 
deposits (fig. 20). As the roll is ap­
proached, the coal bed rises in elevation 
and eventually dips down towards the pa­
leochannel trough. The crest or axis of 
the roll parallels the channel trough 
(fig. 21). The amplitude of the roll is 
controlled by the size of the deposit. 
For example, along line A-A' in figure 
21, the base of the coalbed rises 15 ft 

13 

(4.5 m) within a horizontal distance of 
50 ft (15 m) (17 0 dip). 

Detailed cross-sectional drawings 
through one of the larger paleochannels 
were constructed to illustrate the defor­
mation and other structures associated 
with slumping (figures 22 and 23, in 
pocket). The locations of the cross sec­
tions are shown on figure 4. The two 
cross-sectional drawings form a composite 
view of the paleochannel along two en­
triesc The paleochannel illustrated in 
these drawings measures 175 ft (53.4 m) 
in width where it displaces the coal­
bed. It is 350 ft (106. 7 m) long and 
14.5 ft (4.4 m) in viewable thickness. 
The folded coalbed and small- and large­
scale slip and fault planes on the south­
west side of the paleochannel reflect a 
rotation and overturning movement (slump­
ing) (pillar 2 in figure 22 and pillar 6 
in figure 23). The folded coal bed ap­
pears to have nearly the same volume di­
mensions as the area now occupied by the 
paleochannel deposit. An indication of 
slumping on the northeast flank of the 
paleochannel (pillar 3 in figure 22 and 
pillar 7 in figure 23) is a continuous 
glide zone along the contact between the 
coalbed and siltstone roof. This glide 
zone has slickensides and is striated 
in a northeast-southwest direction. The 
less compacted paleochannel deposit also 
squeezed the coal and underclay into a 
larger roll, which parallels the paleo­
channel axis on the southwest side (fig. 
21). Soft sediment deformation as evi­
denced by the contorted interfingering 
of the sandstone, siltstone, and coal 
suggests that slumping occurred before 
lithification. Inclined bedding planes 
and normal faulting on the southwest 
flank of the structure imply further de­
formation after slumping. 

An overview of these drawings indicates 
that a portion of the exposed paleochan­
nel deposit slumped into the coal bed from 
the northeast to the southwest before the 
sediments lithified. Continued burial 
and compaction further deformed and dis­
placed these sediments into their present 
positions. 
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FIGURE 15.-Sllp plane with slickensides running parallel along margin of paleochannel. 



FIGURE 16.-Typical example of normal faulting that occurs along flanks of 
paleochannel deposits. 

FIGURE 17.-Clay·dike fault commonly associated with differential compaction. 
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FIGURE 19.-Clastic dike infilled with sediments from floor strata. 

FIGURE 20.-Small·scale coal bed roll along flank of channel fill deposit (composite photograph). 
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MINE ROOF STABILITY 

The various sedimentary and structural 
features that affect mine roof stability 
at Gateway Mine are shown in figure 24. 
A subjective classification scheme di­
vides the immediate mine roof character­
istics into three categories: (1) good, 
(2) heavy and spalling, and (3) fallen. 

1. Good Roof. - Roof with no unusual 
spalling or sagging. Mine roof surface 
is fairly planar and/or has the original 
configuration cut during mining. 

/ ~ Outl ine of mine working s 

~~~~ 

LEGEND 

~ Heavy ar spalling raaf, taking weight; 
randomly or ientea fracture and slip 
planes ... Roof falls 
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2. Heavy and Spalling Roof. - Heavy, 
sagging roof that has an uneven rough 
configuration due to u n restrained spall­
ing (figs. 25-26). Excessive loading and 
sagging as observed in squeezed cribs and 
split or bowed posts and crossbars. 

3. Fallen Roof. - An unexpected roof 
fall that requires cleanup. 

Entries located under paleochannel de­
posits are less stable than entries where 
the rider coal interval is present. 

No data 

Underground 
study area 

KEY MAP 

~\ 

FIGURE 24.-Hazardous mine roof associated with channel deposits in underground study area. 
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FIGURE 2S.-Spalling mine roof. 

FIGURE 26.-Heavy and spalling mine roof. 



One-fourth of the total 28.5 acres of 
roof mapped is classified as "heavy and 
spalling" and/or "fallen." One-half of 
such roof occurs within paleochannel de­
posits, which comprise about one-fourth 
of the total mapped area. Table 1 shows 
that more than 50 pct of the siltstone 
roof is classified as "heavy and spall­
ing" and/or "fallen." However, it is im­
portant to note that portions of the roof 
fitting these designations are the weak 
transition zones between different lith­
ologies. As figures 22 through 24 illus­
trate, the vast majority of transition 
zones are located within and adjacent to 
paleochannels. 

Underground core drilling in the mine 
roof was conducted to determine the un­
confined uniaxial compressive strength of 
the rock types associated with paleochan­
nels. Ten boreholes were drilled approx­
imately 11 ft (3.3 m) into the mine roof 
along a cross-sectional path through one 
of the larger paleochannels. Figure 4 
shows the location of the boreholes. 
Rock quality designation (RQD) values 3 

for each borehole were confirmed using a 
fiber optical borehole stratascope. Re­
covered core samples having a minimum 
length-to-diameter ratio to 2:1 were 
tested for unconfined uniaxial compres­
sion strength on a Tinius Olsen4 univer­
sal testing machine. Recovered core hav­
ing a length-to-diameter ratio of 1:1 was 
tested for index values on a Terrametrics 
point-load testing apparatus, in the ax­
ial direction only. Procedures and cal­
culations used to compute index values 
are based on Broch and Franklin's method 

3See appendix f or method of determining 
RQD values. 

4Re ference to specific products does 
not imply endorsement by the Bureau of 
Mines. 
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FIGURE 27.-Linear relationship between unconfined uniax· 
ial compressive strengths and point·load index values of the 
mine roof lithology. 

(!). Rock test results shown in table 2 
indicate that the paleochannel sandstones 
and siltstones are stronger than the 
shales and coals in the rider coal inter­
val. Coal samples from the rider coal 
interval had insufficient length-to-diam­
eter ratio to be tested on the universal 
testing machine. 

Only four out of seven lithologies were 
tested for both unconfined compressive 
strengths and point-load index values, 
because of the limited amount of core and 
inadequate core size. Ideally, this is 
not enough data to reasonably compare the 
unconfined compressive strengths for the 
different mine roof lithologies. Howev­
er, previous studies (!-ll) have shown 
that point-load index values can be used 
to estimate the unconfined compressive 
strength using a conversion factor. The 
conversion factor is based on an estab-

lished linear relationship between the 
mean compressive strength and the mean 
point-load value of particular rock lith­
ologies. For this study, a conversion 
factor of 11.5 was determined from the 

TABLE 1. - Mine roof classification 

Immediate mine roof Roof classification, pct Total 
11 tho logy Good Heavv spalling Fallen area ft 2 

Paleochannel: 
Sandstone •••••.••.• 72 26 2 9,292 
Siltstone ••.••••••. 39 56 5 18,125 

Rider coal interval •• 85 12 3 75 783 
Total or average 76 21 3 103,200 
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equation (unconfined compressive strength 
= 11.5 x point-load value) of a curve fit 
between the mean of the four mean rock 
strengths and the origin as shown in fig­
ure 27. Although these data are limited, 
an assumption was made that the conver­
sion factor of 11.5 could be used to es­
timate unconfined compressive strengths 
from the tested index values. Table 3 
lists the combined test strength values 
for all seven rock types. These results 
are compatible with those found in table 
2. 

Another approach to evaluating mine 
roof integrity, using the 11.5 conversion 
factor, was a comparison between the mean 
strength and RQD value of the rock 

assemblage for each borehole. Figure 28 
shows the positions of boreholes 1 
through 6, 8, and 9 in relation to one 
another. The percentage of lithology 
tested is shown for each borehole in ta­
ble 4. Mean strength values versus dis­
tance from the paleochannel suggest that 
the overall strength of the mine roof 
is weaker near paleochannels (fig. 29). 
This table is misleading and conflicts 
with results presented in tables 2 and 3 
because the mean strength value for each 
borehole is based on the dominating lith­
ology available for testing. These 
tested lithologies (table 4) do not nec­
essarily represent the dominating lithol­
ogy of that borehole. 

TABLE 2. - Results of point-load and unconfined 
compressive strength tests 

Mine roof lithology Number Standard Coefficient of 
deviation variation, ct 

Paleochannel: 
Light-gray sandstone ••••• 70 4.4 1.2 
Light-gray sandstone with 

carbonaceous streaks •••• 28 };o- 1.6 
Dark-gray siltstone •••••• 6 3.3 1.1 
Dark-gray siltstone with 
light-gray sandstone 
streaks ................. 5 2.8 .8 

Interbedded siltstone and 
sandstone ••••••••••••••• 4 3.2 .3 

Rider coal interval: 
Dark-gray s ha 1 e •••••••••• 9 1.9 .5 
Co ale ......••............ 7 .5 .2 

UNCONFINED COMPRESSIVE STRENGTHS 2 

Paleochannel: 
Light-gray sandstone ••••• 24 7,684.7 1,677.2 
Light-gray sandstone with 

carbonaceous streaks •••• 5 7,126.8 2,064.2 
Dark-gray siltstone ••.•.• 6 3,892.9 397.4 
Dark-gray siltstone with 
light-gray sandstone 
streaks ....•............ 6 4,317.9 1,286.7 

Interbedded siltstone and 
sandstone ••••••••••••••• 1 5,363.0 NA 

NA Not available. 
lFor point-load test values: 

10.0, extremely high; 0.3-1.0, medium; 
3.0-10.0 very high; 0.1-0.3, low; 
1.0-3.0, high; 0.03-0.1, extremely low. 

For unconfined compressive strengths: pounds per square inch. 
2No data for rider coal interval. 
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TABLE 3. - Combined test strengths based on the 11.5 conversion factor 1 

Number Mean Standard Coefficient of 
Mine roof lithology of tests strength, 2 deviation, 2 variation, pct 

psi psi 
Paleochannel: 

Light-gray sandstone ••••• 94 7,520.7 1,980.4 26 
Ligh t-gray sandstone with 
carbonaceous st r eaks •••• 33 5,465.1 2,657.1 48 

Dark-gray siltstone •••••• 12 4,733.7 1,598.8 34 
Dark-gray siltstone with 
light-gray sandstone 
streaks ••••••••••••••••• 11 4.513.8 12,278.9 28 

Interbedded siltstone and 
sandstone ••••••••••••••• 5 5,343.6 373.6 7 

Rider coal interval: 
Dark-gray shale •••••••••• 9 3,257.6 893.6 28 
Coa 1 ••.••••••.••••••••.•• 7 857.7 434.3 51 
1Linear relationship between unconfined compressive strengths and point-load 

index values. 
2Based on unconfined compressive strengths and point-load index values. 

TABLE 4. - Lithology tested in underground 
boreholes, 1 percent 

Mine roof lithology 1 2 3 4 5 6 8 9 
Paleochannel: 

Light-gray sandstone ••••• 13 85 58 78 64 45 9 75 
Light-gray sandstone with 
carbonaceous streaks •••• 13 10 37 22 36 22 4 ND 

Dark-gray siltstone •••••• 18 5 ND ND ND ND 39 ND 
Dark-gray siltstone with 
light-gray sandstone 
streaks ................. ND ND ND ND ND ND 35 25 

Interbedded siltstone and 
sandstone ••••••••••••••• ND ND ND ND ND 11 13 ND 

Rider coal interval: 
Dark-gray shale •••••••••• 56 ND ND ND ND ND ND ND 
Co a 1 ••••••••••••••••••••• ND ND 5 ND ND 22 ND ND 

ND No data. lAs numbered in figure 28. 

Based on all of the findings in this 
study, mine roof stability cannot be 
evaluated solely from the unconfined com­
pressive strengths of the mine roof lith­
ologies. Laboratory test results imply 
that the paleochannel deposits are more 
competent than the rider coal interval. 
However, underground observations indi­
cate that, the rider coal interval obvi­
ously provides better roof conditions. 
These laboratory tests cannot consider 

the overall st r uc tural integrity of the 
mine roof as it exists in underground 
conditions. In addition, evaluating mean 
strength data, based on the rock assem­
blage for each borehole, can be mislead­
ing when some of the var~ables are not 
considered. Mine root stability classi­
fications must incorporate both rock 
strength values and underground mapping 
with geologic interpretations to be 
accurate. 



24 

4,430.89 
89 

Hole I 
16 samples 

BOC : 
366.8ft 

Mine entry 

20 

10 

Hole 2 
20 samples 

BOC: 
365.8ft 

0'----'--'----'----' 
120 240 

Scale, ft 

Hole4 
14 sample s 

BOC : 
371 .2 ft 

Hole 5 
28 samples 

BOC : 
372.4 ft 

Station 
2A 

BOC : 
376.5 ft 

5,262 .7 
97 

-~~ 
, -... "'"". U '; " I 

.:~~ : 
, 

- , 

~ . I 

Hole 8 
19 samples 

BOC : 
381 .3f1 

KEY 

Fi rst number over boreholes : 
Mean unconfined uniaxia I compressive 
strength, psi 

Second number over boreholes: 
Mean rock quality designation, pet 

NO No data (roc k strength values) 

BOC Bottom of coal 

Location of test samples 

Datum line 
- - (385 ft above -

Station mean sea level ) 
12 

BOC : 
I 385.9ft 

Hole 9 
13 samples 

BOC : 
385.1 ft 

EJ 
~ 

~ 

~ 

OJ 

• 

Sandstone 

Siltstone 

Shale 

Interbedded siltstone 
and sandstone 

BOlle coal 

Coal 

FIGURE 28.-Generalized stratigraphic columns of underground boreholes with sample locations, mean hole compressive 
strengths, and ROD values. 

en 
C. 

tI) 

o 
.. 

::I: 
r 
(!) 
z 
UJ 
a:: 
r 
fJ) 

z 
<t 
UJ 
~ 

9 

7 

5 

3 
o 400 800 

DISTANCE, ft 

1,200 1,600 

FIGURE 29.-Distance from paleochannel versus mean rock strength for underground boreholes shown in figure 28. 



25 

PALEOCHANNEL SUPPORT 

Heavy and spalling roof associated with 
transition zones, coal bed rolls, and pa­
leochannels requires additional support. 
Rock disturbances related to these fea­
tures can be observed 20 ft (6.0 m) ver­
tically into the main roof. As figure 30 
indicates, angled and/or longer bolts 
would improve roof stability. Tensioned 
bolts help to compress loose fragmented 
roof associated with channel deposits, 
transition zones, and coalbed rolls. 
Mechanical bolts can be used, provided 
they are anchored into competent strata. 
In some areas at Gateway, mechanical 
bolts had to be 12 ft (3.7 m) long to 
reach competent strata. For this reason, 
the mine operator has changed to 5-ft 
(1.5-m) long tensioned rebar bolts, with 
proven success. Tensioned point-anchor 
resin bolts should also be effective in 
controlling this type of ground condi­
tion. Bolts in conjunction with cross­
bars, steel mats, or wire mesh, installed 

immediately after undermining paleochan­
nels, could prevent spalling of immediate 
roof layers. Unstable roof associated 
with larger and more hazardous paleochan­
nels may require steel sets, cribbing, or 
roof trusses. 

Slip planes, faults, and clastic dikes 
associated with channel deposits also 
disrupt the lateral continuity of the 
immediate and, sometimes, the main roof. 
Unstable conditions are most severe when 
these structures are oriented parallel to 
or subparallel to the direction of face 
advance. Under these circumstances, the 
mine roof may be segmented into canti­
lever beams. The cantilever effect can 
be minimized by bolting and strapping to­
gether the roof on each side of the dis­
continuity to form an integral built-in 
beam. Slips, faults, and clastic dike 
orientations (strike and dip) should be 
considered when determining bolt length 
and angle of installation (fig. 31). 

PREDICTION OF PALEOCHANNELS AND THEIR EFFECTS 
ON MINE PLANNING AND DEVELOPMENT 

The presence of paleochannels and their 
impact on mine planning and development 
often go unrecognized during exploratory 
drilling. In many cases, the customary 
grid spacing of drill holes is not suffi­
cient to detect the width, thickness, or 
linear extent of paleochannels. Drill­
log data used in conjunction with under­
ground mapping (l!:) are instrumental in 
predicting paleochannels in advance of 
mining. The absence or thinning of the 
coalbed is the most obvious effect of pa­
leochannels on mining. Contouring coal­
bed thickness using data obtained from 
drill logs and underground measurements 
often identifies larger paleochannels and 
their trends (fig. 32). Analysis of 
coal bed sulfur content can also be used 
to identify probable paleochannel zones. 
In certain coal basins, abnormally high 
coalbed sulfur content often occurs adja­
cent to paleochannels (l2). 

Other evidence that can be derived from 
drill-log data to predict paleochannels 
includes an increase or decrease in coal­
bed thickness (fig. 33), a change in 

coalbed elevation, and coalbed cleat ro­
tation. In the study area normal coal 
thickness (5.8 ft (1.8 m)) increased as 

' much as 4.5 ft (1.4 m) along the margin 
of one of the larger channel deposits. 
As previously mentioned, at Gateway Mine 
increases in coalbed thickness are due to 
the absence of the shale binder in the 
rider coal interval. This local increase 
in coal thickness coincides with a local 
change in coalbed elevation (roll shown 
in figure 21). Within these coalbed 
rolls, the face cleat rotated with re­
spect to strike as much as 40° (figs. 22-
23). The stereonets in figure 34 exhibit 
a wider variation in face cleat dip (as 
represented by changes in the width of 
the band between the opposite contour 
lines of zero point) within a 100-ft 
(30.5-m) zone surrounding paleochannels 
(fig. 35). Routine mining is disrupted 
along the flanks of steeply dipping 
rolls. Continuous miners and shuttle 
cars have difficulties negotiating 16° 
dips, especially when wet, soft floors 
are encountered. This aggravation is 
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FIGURE 30.-Recommended roof bolting plan to increase roof stability along 
flanks of paleochannels. 
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clastic di ke 

FIGURE 31 .-Suggested roof bolting plan to support slip planes, faults, and clastic dikes commonly associated with paleochan· 
nels. A and B, ineffective bolting; C and D, effective bolting. 
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compounded when entries and crosscuts are 
oriented at acute angles to the axis of 
the coalbed rolls. After mining with the 
roll, additional floor must be cut out 
to level track and belt entries. This 
can sometimes result in rooms that are 
20 ft (6.1 m) high. Furthermore, mining 
through hard sandstone and siltstone 
paleochannels can generate frictional 
heat and/or sparks that can cause face 
ignitions. 

Information obtained from drill-log 
data combined with previous mining exper­
ience can significantly assist in plan· · 
ning main entries, longwall panels, and 
new shaft and slope locations. Larger 
paleochannels (similar to the one shown 

in figures 22 and 23) have larger and 
sometimes more numerous slip planes, 
faults, clastic dikes, variations in 
coal bed elevation, and changes in coalbed 
thickness associated with them than do 
the smaller ones. Knowledge of these 
features and paleochannel sediments helps 
delineate paleochannels during mine de­
velopment. Generally, larger paleochan­
nels and their trends should be avoided 
when possible. Main entries should be 
driven away from and parallel to channel 
deposits to minimize contacts. 

The trend of a paleochannel can be es · 
tablished by contacting its bounda ry at 
two or three locations along an entry. 
If the trend coincides with a planned 



crosscut, mining of the entry should 
proceed beyond the paleochannel before 
driving the crosscut, if roof control and 
ventilation plans allow. This would 
encompass the paleochannel in a pillar. 
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If mining through a large paleochannel is 
unavoidable, the preferred orientation is 
at right angles to its trend to minimize 
the distance of exposure to the potential 
hazard. 

CONCLUSIONS 

1. Paleochannels are ancient stream 
channel deposits composed of sandstone 
and/or siltstone. Deposits have a north­
west-southeast trend, which is charac­
teristic of the Pittsburgh Sandstone 
distribution. Underground investigations 
indicate that paleochannel deposits and 
the adjacent rider coal interval were de­
posited contemporaneously. 

2. Channel deposits have either eroded 
and/or displaced the Pittsburgh Coalbed 
in many places. Erosion occurred when 
the ancient streams cut into already de­
posited peat, carrying it away and then 
redepositing stream sediments. Coalbed 
displacements, which are the direct re­
sult of differential compaction, formed 
slip planes, faults, clay-dike faults, 
clastic dikes, rolls, and slump 
structures. 

3. Mine entries beneath paleochannel 
deposits have less stable roof conditions 
than entries where the rider coal inter­
val is present. The hazardous roof is 
the result of the sedimentary and struc­
tural discontinuities in and surrounding 
the paleochannel deposits. This study 
showed that classifying the rock units 
using only RQD values, uniaxial uncon­
fined compressive strengths, and point­
load index values does not adequately 
identify the true mine roof stability. 
Underground mapping identified numerous 
examples of strong rock found within un­
stable areas and weak rock within stable 
areas. 

4. Properly installed tensioned bolts, 
in conjunction with steel mats, help to 
prevent spalling of loose fragmented roof 
that occurs in transition zones and coal­
bed rolls. The orientation of slips, 
faults, and clastic dikes related to 
channel deposits should be considered 
when selecting bolt length and angle of 
installation. Larger and more hazardous 
paleochannels may require steel sets, 
cribbing, or roof trusses. 

5. Drill-log data, combined with un­
derground observations, can be useful 
in predicting paleochannels. Contouring 
coal bed thickness from exploratory bore­
hole data and knowledge of particular 
sediments associated with channel depos­
its can identify channel trends and as­
sist in long-term projections. Recogni­
tion of common structures related to 
paleochannels, such as slip planes, 
faults, clay-dike faults, clastic dikes, 
coalbed rolls, changes in coalbed thick­
ness, and slumped features can help iden­
tify the locations of paleochannels prior 
to encountering them during mining. 

6. Main entries should be driven away 
from and parallel to paleochannels to 
minimize contacts. If paleochannels can­
not be avoided, then the preferred mining 
orientation is at right angles to the 
trend of the paleochannel in order to 
minimize the distance of exposure to the 
potential hazard. 
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APPENDIX.--ROCK QUALITY DESIGNATION METHOD (l) 

The rock quality designation (RQD) 
method is as follows: 

Sum up the total length of core recov­
ered in each run. Then sum up only those 
pieces of core that are 4 in (10 cm) in 
length or longer. Divide the sum of the 
4 in or longer pieces by the total length 
of the core recovered. Multiply that 
quotient by 100. This final value rep­
resents a percentage ot the total length 
of run. If the core is broken by han- ' 
dling or by the drilling process, the 
freshly broken pieces are fitted together 
and counted as one piece, provided that 
they form the requisite length of 4 in 

(10 cm). The relationship of RQD to rock 
quality is as follows: 

RQD, pct 

o to 25 •••.........•••...•. 
25 to SO ••••••••••••••••••• 
SO to 75 ••••••••••••••••••• 
75 to 90 ...............•... 
90 to 100 •••••••••••••••••• 

Rock quality 

Very poor. 
Poor. 
Fair. 
Good. 
Excellent . 

Malk the RQD percentage on the 
log. This description is intended 
marily for evalauting problems with 
nels or excavations in rock. 

core 
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tun-
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